Experimental Section

General

Specific rotations were measured in a 10 mm cell. ¹H NMR spectra were recorded at 270 MHz or at 300 MHz with tetramethylsilane as an internal standard. ¹³C NMR spectra were recorded at 68 MHz or at 75 MHz. All spectra were recorded in CDCl₃ as solvent, unless otherwise described. Thin-layer chromatography (TLC) was performed with a glass plate coated with Kieselgel 60 F₂₅₄ (Merck). The crude reaction mixtures and extractive materials were purified by chromatography on silica gel Daisogel IR-60 (Daiso Co., Ltd.) or Wakogel C300 (Wako Pure Chemical Industries). Unless otherwise described, reactions were carried out at ambient temperature. Combined organic extracts were dried over anhydrous Na₂SO₄. Solvents were removed from reaction mixture or combined organic extracts by concentration under reduced pressure using an evaporator with a water bath at 35-45 °C.

(3*R*,4*S*,5*R*)-5,6-(Isopropylidene)dioxy-4-[(4-methoxyphenyl)methoxy]-3-methyl-1 -hexene (10)

To a cooled (0 °C), stirred solution of 9^1 (698 mg, 3.75 mmol) in DMF (15 mL) was added NaH (60% in oil, 301 mg, 7.53 mmol). The mixture was stirred for 30 min and 4-methoxybenzyl chloride (0.77 mL, 5.7 mmol) was added at 0 °C. The mixture was stirred for 2 h and quenched with saturated aqueous NH₄Cl. This was diluted with Et₂O (30 mL) and washed with saturated brine. The organic layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/toluene/triethylamine, 1:100:1) to provide 1.07 g (93%) of 10 as a colorless oil; TLC, R_f 0.70 (EtOAc/hexane, 1:2); [α]²⁷_D +43.2 (c 1.64, CHCl₃); ¹H NMR (270 MHz) δ 1.07 (d, J = 7.0 Hz, 3H), 1.35, 1.43 (2s, 3H×2), 2.37 (m, 1H), 3.51 (dd, J = 5.0, 5.5 Hz, 1H), 3.80 (s, 3H), 3.88 (dd, J = 7.3, 8.1 Hz, 1H), 3.97 (dd, J = 6.4, 8.1 Hz, 1H), 4.16 (ddd, J = 5.0, 6.4, 7.3 Hz, 1H), 4.55, 4.65 (2d, J = 11.0 Hz, 1H×2), 5.00–5.10 (m, 2H),

5.85 (ddd, J = 7.7, 10.3, 17.2 Hz, 1H), 6.87 (m, 2H), 7.26 (m, 2H); ¹³C NMR (75 MHz) δ 15.31, 25.43, 26.60, 40.37, 55.22, 65.62, 74.14, 76.87, 82.08, 108.60, 113.70 \times 2, 114.55, 129.41 \times 2, 130.76, 141.19, 159.13; IR (neat) 2990, 1615, 1515 cm⁻¹; HRMS calcd for C₁₈H₂₆O₄ (M⁺) m/z 306.1831, found 306.1832.

(3*R*,4*S*,5*R*)-5,6-(Isopropylidene)dioxy-4-[(4-methoxyphenyl)methoxy]-3-methyl-1 -hexanol (11)

The following reaction was carried out under argon. To a cooled (0 °C), stirred solution of 10 (1.95 g, 6.36 mmol) in THF (30 mL) was added BH₃·SMe₂ (0.25 mL, 2.5 mmol). The mixture was stirred for 2 h and then guenched with EtOH followed by the addition of 1 M aqueous NaOH (6 mL) and 35% H₂O₂ (2 mL). The mixture was stirred vigorously for 3.5 h and 10 % aqueous Na₂S₂O₃ (100 mL) was added. This was extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5) to provide 1.59 g (77%) of 11 as a colorless oil; TLC, R_f 0.14 (EtOAc/hexane, 1:2); $[\alpha]^{24}_D$ +25.5 (c 1.82, CHCl₃); ¹H NMR(300 MHz) δ 0.97 (d, J = 7.1Hz, 3H), 1.34, 1.42 (2s, 3 H \times 2), 1.52 (m, 1H), 1.75 (m, 1H), 1.97 (m, 1H), 2.17 (br s, 1H), 3.50 (dd, J = 3.3, 5.9 Hz, 1H), 3.55–3.74 (m, 2H), 3.79 (s, 3H), 3.89 (dd, J = 6.8, 7.8 Hz, 1H), 4.04 (dd, J = 6.3, 7.8 Hz, 1H), 4.17 (ddd, J = 5.9, 6.3, 6.8 Hz, 1H), 4.55, 4.59 (2d, J = 11.0 Hz, $1H \times 2$), 6.87 (m, 2H), 7.25 (m, 2H); 13 C NMR (75 MHz) δ 15.23, $25.23, 26.63, 32.52, 36.55, 55.24, 61.21, 66.77, 73.61, 76.69, 82.58, 108.52, 113.77 \times$ 2, 129.36 × 2, 130.46, 159.20; IR (neat) 3400, 2940, 1615, 1515 cm⁻¹; HRMS calcd for $C_{18}H_{28}O_5$ (M⁺) m/z 324.1937, found 324.1934

Ethyl

(2*E*,5*R*,6*S*,7*R*)-7,8-(isopropylidene)dioxy-6-[(4-methoxyphenyl)methoxy]-5-meth yl-2-octenoate (12)

The following reaction was carried out under argon. To a cooled (–78 °C), stirred solution of oxalyl chloride (0.49 mL, 5.6 mmol) in CH₂Cl₂ (9 mL) was added DMSO

(0.80 mL, 11 mmol). The mixture was stirred at –78 °C for 30 min. To this was added **11** (603 mg, 1.86 mmol) in CH₂Cl₂ (5 mL) at –78 °C. The mixture was stirred at –78 °C for 1 h and then Et₃N (2.6 mL, 19 mmol) was added and gradually warmed to rt. The mixture was stirred for 30 min. This was diluted with saturated brine (30 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo to give crude aldehyde, which was used in the next step without purification.

To a stirred solution of the crude aldehyde obtained above in benzene (14 mL) was added Ph₃P=CHCO₂Et (1.98 g, 5.68 mmol). The mixture was stirred for 14 h and concentrated in vacuo. The residue was triturated with excess petroleum ether. The precipitated Ph₃P=O was removed by filtration and washed well with cooled petroleum ether. The combined filtrate and washings were concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:15) to provide 616 mg (84%) of **12** as a colorless oil; TLC, R_f 0.68 (EtOAc/hexane, 1:2); $[\alpha]^{27}_D$ –9.1 (c 1.41, CHCl₃); ¹H NMR (300 MHz) δ 0.95 (d, J = 6.8 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.35, 1.42 (2s, 3H × 2), 1.98 (m, 1H), 2.13 (m, 1H), 2.38 (m, 1H), 3.49 (dd, J = 2.9, 5.8 Hz, 1H), 3.81 (s, 3H), 3.89 (dd, J = 6.3, 7.8 Hz, 1H), 4.04 (dd, J = 6.3, 7.8 Hz), 4.04 (dd, J = 6.3, 7.8 Hz) 7.8 Hz, 1H), 4.11 (q, J = 6.3, 6.5 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 4.50, 4.59 (2d, J =11.0 Hz, 1H \times 2), 5.81 (d, J = 15.6 Hz, 1H), 6.86–6.97 (m, 3H), 7.25 (m, 2H); ¹³C NMR $(75 \text{ MHz}) \delta 14.24, 14.43, 25.22, 26.65, 35.00, 36.53, 55.24, 60.17, 66.70, 73.74, 76.87,$ 81.64, 108.57, 113.77 \times 2, 122.75, 129.24 \times 2, 130.53, 147.73, 159.20, 166.44; IR (neat) 2980, 1715, 1650, 1615, 1515 cm⁻¹; HRMS calcd for $C_{22}H_{32}O_6$ (M⁺) m/z392.2199, found 392.2204.

(2*E*,5*R*,6*S*,7*R*)-7,8,-(Isopropylidene)dioxy-6-[(4-methoxyphenyl)methoxy]-5-meth yl-2-octen-1-ol (13)

The following reaction was carried out under argon. To a cooled (-78 °C), stirred solution of **12** (911 mg, 2.32 mmol) in CH₂Cl₂ (15 mL) was added DIBALH (5.1 mL of 1.0 M in toluene, 5.1 mmol). The mixture was stirred at -78 °C for 30 min and

DIBALH (1.2 mL of 1.0 M in toluene, 1.2 mmol). The mixture was stirred at -78 °C for 30 min and quenched with H₂O. This was diluted with CH₂Cl₂ (10 mL), and then an aqueous solution (10 mL) of potassium sodium (+)-tartrate tetrahydrate (3.6 g) was The mixture was stirred vigorously for 12 h and the organic layer was added. The aqueous layer was extracted with CH₂Cl₂. separated. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 789 mg (97%) of 13 as a colorless oil; TLC, R_f 0.25 (EtOAc/hexane, 1:2); $[\alpha]^{24}_D$ +6.5 (c 1.87, CHCl₃); ¹H NMR $(300 \text{ MHz}) \delta 0.93 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H}), 1.35, 1.42 \text{ (2s, } 3\text{H} \times 2), 1.68 \text{ (br s, } 1\text{H}), 1.83 \text{ (m, } 1.83 \text{ (m, }$ 1H), 2.00 (m, 1H), 2.24 (m, 1H), 3.52 (dd, J = 3.3, 5.5 Hz, 1H), 3.80 (s, 3H), 3.90 (dd, J= 6.9, 7.9 Hz, 1H), 4.02 (dd, J = 6.5, 7.9 Hz, 1H), 4.08 (d, J = 2.2 Hz, 2H), 4.13 (q, J = 2.2 Hz, 2Hz), 4.13 (q, J = 2.2 Hz, 2Hz)6.5 Hz, 1H), 4.52, 4.61 (2d, J = 11.0 Hz, 1H \times 2), 5.63–5.65 (m, 2H), 6.88 (m, 2H), 7.25 (m, 2H); 13 C NMR (68 MHz) δ 14.37, 25.22, 26.64, 35.56, 36.66, 55.23, 63.55, 66.49, 73.78, 77.06, 81.49, 108.42, 113.72 \times 2, 129.18 \times 2, 130.74, 131.31 \times 2, 159.10; IR (neat) 3400, 2940, 1615, 1515 cm⁻¹; HRMS calcd for $C_{20}H_{30}O_5$ (M⁺) m/z 350.2093, found 350.2099

(2*E*,5*R*,6*S*,7*R*)-7,8-(Isopropylidene)dioxy-6-[(4-methoxyphenyl)methoxy]-5-meth yl-1-pivaloyloxy-2-octene (14)

To a cooled (0 °C), stirred solution of **13** (325 mg, 0.927 mmol) in pyridine (6.5 mL) were added Et₃N (0.19 mL, 1.4 mmol) and PivCl (0.17 mL, 1.4 mmol). The mixture was stirred for 1 h and then Et₃N (0.039 mL, 0.28 mmol) and PivCl (0.034 mL, 0.28 mmol) were added. The mixture was stirred for 1 h and then concentrated with the aid of toluene. This was diluted with EtOAc (10 mL) and washed with saturated brine. The organic layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:40) to provide 386 mg (97%) of **14** as a colorless oil; TLC, R_f 0.83 (EtOAc/hexane, 1:2); $[\alpha]^{25}_D$ +5.6 (c 1.82, CHCl₃); ¹H NMR (300 MHz) δ 0.92 (d, J = 6.8 Hz, 3H), 1.20 (s, 9H), 1.35, 1.42 (2s, 3H × 2), 1.85

(m, 1H), 2.01 (m, 1H), 2.25 (m, 1H), 3.50 (dd, J = 3.2, 5.5 Hz, 1H), 3.80 (s, 3H), 3.88 (dd, J = 6.2, 8.0 Hz, 1H), 4.02 (dd, J = 6.2, 8.0 Hz, 1H), 4.12 (q, J = 6.2 Hz, 1H), 4.50–4.54 (m, 3H), 4.59 (d, J = 11.0 Hz, 1H), 5.56 (dt, J = 15.4, 6.0 Hz, 1H), 5.71 (td, J = 6.9, 15.4 Hz, 1H), 6.87 (m, 2H), 7.25 (m, 2H); ¹³C NMR (75 MHz) δ 14.24, 25.23, 26.65, 27.16 \times 3, 35.42, 36.73, 38.69, 55.20, 64.79, 66.57, 73.79, 76.97, 81.59, 108.45, 113.70 \times 2, 125.91, 129.16 \times 2, 130.76, 134.03, 159.12, 178.26; IR (neat) 2980, 1730, 1610, 1515 cm⁻¹; HRMS calcd for C₂₅H₃₈O₆ (M⁺) m/z 434.2668, found 434.2666

(2R,3S,4R,6E)-3-[(4-Methoxyphenyl)methoxy]-4-methyl-8-pivaloyloxy-6-octene-1,2-diol (15)

Compound **14** (386 mg, 0.889 mmol) was dissolved in a mixture of AcOH, H₂O, and THF (3:1:1, v/v, 8 mL). The solution was stirred at 40 °C for 18 h and then concentrated in vacuo with the aid of toluene and EtOH. The residue was purified by column chromatography on silica gel (acetone/hexane, 1:5) to provide 333 mg (95%) of **15** as a colorless oil; TLC, R_f 0.35 (acetone/hexane, 1:2); $[\alpha]^{26}_D$ +0.2 (c 1.54, CHCl₃); ¹H NMR (270 MHz) δ 0.99 (d, J = 6.6 Hz, 3H), 1.20 (s, 9H), 1.88–2.10 (m, 4H), 2.23 (m, 1H), 3.42 (t, J = 4.9 Hz, 1H), 3.69–3.78 (m, 3H), 3.80 (s, 3H), 4.48–4.58 (m, 4H), 5.56 (dt, J = 15.4, 6.0 Hz, 1H), 5.72 (dt, J = 15.4, 6.8 Hz, 1H), 6.88 (m, 2H), 7.25 (m, 2H); ¹³C NMR (75 MHz) δ 14.41, 27.14 × 3, 34.71, 36.98, 38.72, 55.24, 63.81, 64.84, 71.69, 74.12, 82.84, 113.85×2, 125.99, 129.33×2, 130.40, 133.87, 159.27, 178.46; IR (neat) 3400, 2970, 1730, 1615, 1515 cm⁻¹; HRMS calcd for $C_{22}H_{34}O_6$ (M+) m/z 394.2355, found 394.2348.

(3*S*,4*R*,6*E*)-1,1-Dibromo-3-[(4-methoxyphenyl)methoxy]-4-methyl-8-pivaloyloxy-1,6-octadiene (16)

To a cooled (0 °C), stirred solution of **15** (281 mg, 0.712 mmol) in MeOH (4 mL) was added a solution of NaIO₄ (305 mg, 0.142 mmol) in H₂O (2 mL). The mixture was stirred for 30 min and then diluted with H₂O (7 mL) and extracted with CH_2CI_2 . The combined organic layers were dried and concentrated in vacuo to give crude aldehyde,

which was used in the next step without purification.

The following reaction was carried out under argon. To a cooled (0 °C), stirred solution of CBr₄ (826 mg, 2.49 mmol) in CH₂Cl₂ (3 mL) was added a solution of PPh₃ (1.31 g, 4.98 mmol) in CH₂Cl₂ (1 mL). The mixture was stirred at 0°C for 15 min and then cooled to -78 °C. Then a solution of the crude aldehyde obtained above in CH₂Cl₂ (1 mL) was added at -78 °C. The mixture was stirred at -78 °C for 1 h and diluted with saturated aqueous NaHCO₃ (6 mL). This was extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. was purified by column chromatography on silica gel (EtOAc/hexane, 1:18) to provide 302 mg (82%) of **16** as a colorless oil; TLC, R_f 0.69 (EtOAc/hexane, 1:3); $[\alpha]^{27}_D$ -4.4 (c1.72, CHCl₃); ¹H NMR (300 MHz) δ 0.94 (d, J = 6.8 Hz, 3H), 1.19 (s, 9H), 1.76 (m, 1H), 1.88 (m, 1H), 2.24 (m, 1H), 3.81 (s, 3H), 3.90 (dd, J = 5.4, 8.5 Hz, 1H), 4.29 (d, J = 11.5Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H), 4.52 (d, J = 11.5 Hz, 1H), 5.52 (dt, J = 15.4, 5.9 Hz, 1H), 5.65 (dt, J = 15.4, 6.7 Hz, 1H), 6.44 (d, J = 8.5 Hz, 1H), 6.88 (m, 2H), 7.26 (m, 2H); ¹³C NMR (75 MHz) δ 14.94, 27.19 \times 3, 35.42, 37.54, 38.70, 55.24, 64.78, 70.60, 81.59, 91.33, 113.70×2 , 126.10, 129.47×2 , 130.17, 133.26, 138.95, 159.18, 178.28; IR (neat) 2970, 1730, 1615, 1515 cm⁻¹; HRMS calcd for C₂₂H₃₀O₄BrBr⁸¹ (M⁺) m/z 518.0490, found 518.0499.

(2*E*,5*R*,6*S*)-8,8-Dibromo-6-[(4-methoxyphenyl)methoxy]-5-methyl-2,7-octadien-1 -ol (17)

The following reaction was carried out under argon. To a cooled (-78 °C), stirred solution of **16** (249 mg, 0.480 mmol) in CH₂Cl₂ (5 mL) was added DIBALH (1.1 mL of 1.0 M in toluene, 1.1 mmol). The mixture was stirred at -78 °C for 30 min and quenched with H₂O. This was diluted with CH₂Cl₂ (10 mL), and then an aqueous solution (10 mL) of potassium sodium (+)-tartrate tetrahydrate (745 mg) was added. The mixture was stirred vigorously for 14 h and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried

and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5) to provide 202 mg (97%) of **17** as a colorless oil; TLC, R_f 0.29 (EtOAc/hexane, 1:3); $[\alpha]^{25}_D$ –9.5 (c 1.59, CHCl₃); ¹H NMR (300 MHz) δ 0.95 (d, J = 6.6 Hz, 3H), 1.54 (br s, 1H), 1.75 (m, 1H), 1.88 (m, 1H), 2.21 (m, 1H), 3.81 (s, 3H), 3.89 (dd, J = 5.5, 8.7 Hz, 1H), 4.05 (d, J = 3.4 Hz, 2H), 4.28, 4.53 (2d, J = 11.5 Hz, 1H × 2), 5.56–5.60 (m, 2H), 6.45 (d, J = 8.7 Hz, 1H), 6.88 (m, 2H), 7.26 (m, 2H); ¹³C NMR (75 MHz) δ 15.05, 35.35, 37.64, 55.24, 63.59, 70.54, 81.59, 91.34, 113.68 × 2, 129.52 × 2, 130.17, 130.71, 130.91, 138.95, 159.18; IR (neat) 3400, 2940, 1615, 1515 cm⁻¹; HRMS calcd for $C_{17}H_{22}O_3BrBr^{81}$ (M⁺) m/z 433.9915, found 433.9913.

(3*S*,4*R*,6*E*)-1,1-Dibromo-8-(*t*-butyldiphenylsilyloxy)3-[(4-methoxyphenyl)methox y]-4-methyl-1,6-octadiene (18)

To a cooled (0 °C), stirred solution of 17 (202 mg, 0.466 mmol) in DMF (2 mL) were added imidazole (76.1 mg, 1.12 mmol) and TBDPSCI (0.15 mL, 0.56 mmol). The mixture was stirred for 1.5 h and then diluted with EtOAc (10 mL) and washed with saturated brine. The organic layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:35) to provide 303 mg (97%) of **18** as a colorless oil; TLC, R_f 0.74 (EtOAc/hexane, 1:3); $[\alpha]^{26}$ _D -2.2 (c 1.48, CHCl₃); ¹H NMR (300 MHz) δ 0.95 (d, J = 6.6 Hz, 3H), 1.05 (s, 9 H), 1.74 (m, 1H), 1.87 (m, 1H), 2.22 (m, 1H), 3.78 (s, 3H), 3.91 (dd, <math>J = 5.6, 8.5 Hz, 1H), 4.14 (d, 1H)J = 3.7 Hz, 2H), 4.29, 4.52 (2d, J = 11.5 Hz, 1H \times 2), 5.48–5.66 (m, 2H), 6.44 (d, J = 8.5Hz, 1H), 6.87 (m, 2H), 7.25 (m, 2H), 7.35–7.41 (m, 6H), 7.64–7.70 (m, 4H); ¹³C NMR $(75 \text{ MHz}) \delta 15.00, 19.21, 26.83 \times 3, 35.40, 37.77, 55.22, 64.37, 70.65, 81.84, 91.21,$ 113.70×2 , 127.60×4 , 128.57, 129.44×2 , 129.56×2 , 130.28, 130.79, 133.82×2 , 135.51×4 , 139.13, 159.17; IR (neat) 3080, 2940, 1610, 1515 cm⁻¹; HRMS calcd for $C_{29}H_{31}O_3BrBr^{81}Si$ (M⁺–t-Bu) m/z 615.0389, found 615.0404.

(3*S*,4*R*,6*E*)-8-(*t*-Butyldiphenylsilyloxy)3-[(4-methoxyphenyl)methoxy]-4-methyl-6 -octen-1-yne (6)

The following reaction was carried out under argon. To a cooled (-78 °C), stirred solution of 18 (1.68 g, 2.50 mmol) in THF (30 mL) was added BuLi (3.1 mL of 2.46 M in hexane, 7.5 mmol). The mixture was stirred at -78 °C for 30 min and quenched with This was diluted with saturated NH₄Cl (100 mL) and saturated aqueous NH₄Cl. extracted with EtOAc. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:100) to provide 1.02 g (80%) of **6** as a colorless oil; TLC, R_f 0.66 (EtOAc/hexane, 1:3); $[\alpha]^{26}_D$ –50.9 (c 1.62, CHCl₃); ¹H NMR (270 MHz) δ 0.99 (d, J =7.0 Hz, 3H), 1.05 (s, 9H), 1.82 (m, 1H), 1.95 (m, 1H), 2.34 (m, 1H), 2.46 (d, J = 2.0 Hz, 1H), 3.78 (s, 3H), 3.93 (dd, J = 2.0, 4.8 Hz, 1H), 4.13 (d, J = 4.0 Hz, 2H), 4.39, 4.73 (2d, $J = 11.4 \text{ Hz}, 1H \times 2$, 5.47–5.65 (m, 2H), 6.85 (m, 2H), 7.28 (m, 2H), 7.36–7.42 (m, 6H), 7.64–7.70 (m, 4H); ¹³C NMR (68 MHz) δ 15.09, 19.21, 26.84 \times 3, 35.07, 38.24, 55.23, 2, 130.02, 130.74, 133.87 \times 2, 135.52 \times 4, 159.19; IR (neat) 3290, 3070, 2930, 1615, 1515 cm⁻¹; HRMS calcd for $C_{33}H_{40}O_3Si$ (M⁺) m/z 512.2747, found 512.2742.

(3R,4S)-4,5-(Isopropylidene)dioxy-3-methyl-1-pentanol (21)²

To a cooled (0 °C), stirred solution of 20^3 (12.6 g, 58.2 mmol) in Et₂O (250 mL) was added LiAlH₄ (2.22 g, 58.5 mmol). The mixture was stirred at 0 °C for 1 h and LiAlH₄ (0.66 g, 17 mmol) was added. The mixture was stirred at 0 °C for 1 h and LiAlH₄ (0.66 g, 17 mmol) was added. The mixture was stirred at 0 °C for 1 h and then quenched with H₂O (4 mL), followed by successive addition of 15% aqueous NaOH (4 mL) and H₂O (14 mL). After being stirred, the mixture was filtered through a Celite pad. The combined filtrate and washings were concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 9.75 g (96%) of 21 as a colorless oil.; TLC, R_f 0.21 (EtOAc/hexane, 1:2); $[\alpha]^{26}_D$ +19.0 (c 1.70, CHCl₃); ¹H NMR (270 MHz) δ 0.99 (d, J = 6.6 Hz, 3H), 1.36, 1.42 (2s, 3H × 2), 1.43 (m, 1H), 1.66 (m, 1H), 1.84 (m, 1H), 1.95 (br s, 1H), 3.61–3.80 (m, 3H), 4.01 (m,

2H); 13 C NMR (75 MHz) δ 15.12, 25.28, 26.38, 32.70, 35.53, 60.30, 67.13, 79.62, 108,73; IR (neat) 3400, 2990 cm $^{-1}$; HRMS calcd for $C_8H_{15}O_3$ (M $^+$ -CH $_3$) m/z 159.1021, found 159.1024.

Ethyl (2E,5R,6S)-6,7-(isopropylidene)dioxy-5-methyl-2-heptenoate (22)

To a cooled (0 °C) solution of **21** (5.52 g, 31.7 mmol) in CH_2Cl_2 (110 mL) were added molecular sieves (MS) 4A (11.1 g), NaOAc (1.31 g, 16.0 mmol), and pyridinium chlorochromate (PCC) (10.3 g, 47.8 mmol). The mixture was stirred for 2 h and the mixture was transferred to a short column packed with silica gel. The column was eluted with excess Et_2O . The ethereal elute was concentrated in vacuo to provide 4.16 g (76%) of aldehyde.

The following reaction was carried out under argon. To a cooled (0 °C), stirred suspension of NaH (60% in oil, 1.53 g, 38 mmol) in THF (50 mL) was added $(EtO)_2P(O)CH_2CO_2Et$ (16 mL, 81 mmol). The mixture was stirred for 1 h, and a solution of the aldehyde (4.16 g) obtained above in THF (10 mL) was added at 0 °C. The mixture was stirred for 1 h and quenched with saturated aqueous NH₄Cl. This was diluted with H₂O (400 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 4.67 g (80%) of 22 as a colorless oil (a small amount of the Z-isomer was separated from the E-isomer 22); TLC, R_f 0.70 (EtOAc/hexane, 1:2); $[\alpha]^{23}_D$ +5.0 (c 1.58, CHCl₃); ¹H NMR (270 MHz) δ 0.98 (d, J = 6.6 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.35, 1.41 (2s, 3H \times 2), 1.81 (m, 1H), 2.03 (m, 1H), 2.31 (m, 1H), 3.63 (m, 1H), 3.92–4.04 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 5.85 (dt, J = 15.4, 1.5 Hz, 1H), 6.92 (ddd, J = 7.0, 8.1, 15.4 Hz, 1H); ¹³C NMR (68 MHz) δ 14.22, 15.23, 25.28, 26.40, 35.56, 35.68, 60.21, 67.09, 79.13, 108.79, 122.96, 146.89, 166.36; IR (neat) 2990, 1715, 1650 cm⁻¹; HRMS calcd for C₁₃H₂₂O₄ (M⁺) m/z 242.1518, found 242.1518.

(2E,5R,6S)-6,7-(Isopropylidene)dioxy-5-methyl-2-hepten-1-ol (23)

The following reaction was carried out under argon. To a cooled (-78 °C), stirred solution of 22 (1.08 g, 4.47 mmol) in CH₂Cl₂ (20 mL) was added DIBALH (11 mL of 1.0 M in toluene, 11 mmol). The mixture was stirred at -78 °C for 20 min and quenched This was diluted with CH₂Cl₂ (10 mL), and then an aqueous solution (30 with H_2O . mL) of potassium sodium (+)-tartrate tetrahydrate (7.90 g) was added. The mixture was stirred vigorously for 3.5 h and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo to give crude 23, which was used in the next step without purification. In a small-scale experiment, pure 23 was obtained by column chromatography on silica gel (EtOAc/hexane, 1:4) as a colorless oil; TLC, R_f 0.29 (EtOAc/hexane, 1:2); $[\alpha]^{23}_D$ +8.2 (c 1.72, CHCl₃); ¹H NMR (270 MHz) δ 0.97 (d, J = 7.0Hz, 3H), 1.35, 1.40 (2s, $3 \text{ H} \times 2$), 1.69 (m, 1H), 1.80–1.93 (m, 2H), 2.15 (m, 1H), 3.62 (t, J = 7.3 Hz, 1H), 3.92 (dt, J = 7.3, 6.2 Hz, 1H), 4.00 (dd, J = 6.2, 7.3 Hz, 1H), 4.10 (m, 2H), 5.62–5.69 (m, 2H); ¹³C NMR (68 MHz) δ 15.38, 25.43, 26.49, 35.62, 36.34, 63.44, 67.44, 79.59, 108.56, 130.36, 130.91; IR (neat) 3400, 2990 cm⁻¹; HRMS calcd for $C_{11}H_{20}O_3$ (M⁺) m/z 200.1412, found 200.1401.

(2S,3R,5E)-3-Methyl-5-heptene-1,2,7-triol (24)

To a cooled (0 °C), stirred solution of the crude **23** obtained above in MeOH–H₂O (1:1, 20 mL) was added Amberlyst 15 (182 mg). The mixture was stirred at 40 °C for 21 h and then the resin was filtered off. The filtrate was concentrated in vacuo to give crude **24**, which was used in the next step without purification. In a small-scale experiment, pure **24** was obtained by column chromatography on silica gel (acetone/toluene, 1:3) as a colorless oil; TLC, R_f 0.22 (acetone/toluene, 1:1); $[\alpha]^{22}_D$ +0.80 (c 1.32, MeOH); ¹H NMR (270 MHz) δ 0.94 (d, J = 6.6 Hz, 3H), 1.68 (m, 1H), 1.78 (br s, 3H), 1.97 (m, 1H), 2.23 (m, 1H), 3.53–3.70 (m, 3H), 4.10–4.12 (m, 2H), 5.66–5.72 (m, 2H); ¹³C NMR (68 MHz) δ 14.37, 35.56, 36.08, 63.58, 65.05, 74.81, 130.85, 130.94; IR (neat) 3350, 2930 cm⁻¹; HRMS calcd for $C_8H_{14}O_2$ (M⁺–H₂O) m/z 142.0994,

found 142.0993.

(2E,5R,6S)-6-[(4-Methoxyphenyl)methoxy]-5-methyl-2-heptene-1,7-diol (25)

To a cooled (0 °C), stirred solution of the crude **24** obtained above in DMF (15 mL) were added 4-methoxybenzaldehyde dimethylacetal (0.70 mL, 6.9 mmol) and TsOH·H₂O (43.1 mg, 0.227 mmol). The mixture was stirred at 40 °C for 22 h under reduced pressure with aspirator. This was diluted with saturated aqueous NaHCO₃ (40 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:3) to provide 1.09 g of the 4-methoxybenzylidene acetal, which was used immediately in the next step.

The following reaction was carried out under argon. To a cooled (-78 °C), stirred solution of the acetal obtained above (1.09 g) in CH₂Cl₂ (25 mL) was added DIBALH (12 mL of 1.0 M in toluene, 12 mmol). The mixture was stirred at -78 °C for 20 min and quenched with H₂O. This was diluted with CH₂Cl₂ (25 mL), and then an aqueous solution (50 mL) of potassium sodium (+)-tartrate tetrahydrate (8.32 g) was added. The mixture was stirred vigorously for 3 h and the organic layer was separated. aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (acetone/hexane, 1:4) to provide 0.990 g (80%, 4 steps from 22) of 25 as a colorless oil; TLC, $R_f 0.50$ (acetone/toluene, 1:1); $[\alpha]^{22}_D + 3.1$ (c 1.50, CHCl₃); ¹H NMR $(270 \text{ MHz}) \delta 0.94 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H}), 1.80-1.91 \text{ (m, } 4\text{H}), 2.28 \text{ (m, } 1\text{H}), 3.39 \text{ (m, } 1\text{H}),$ 3.60 (dd, J = 6.2, 11.4 Hz, 1H), 3.67 (dd, J = 4.2, 11.4 Hz, 1H), 3.81 (s, 3H), 4.07 (m, 2H), 4.49, 4.56 (2d, J = 11.2 Hz, $1H \times 2$), 5.55–5.70 (m, 2H), 6.89 (m, 2H), 7.27 (m, 2H); ¹³C NMR (68 MHz) δ 15.26, 34.32, 35.33, 55.26, 62.03, 63.55, 72.13, 82.82, 113.86 \times 2, 129.35×2 , 130.56, 130.65, 131.20, 159.24; IR (neat) 3350, 2940, 1615, 1515 cm⁻¹; HRMS calcd for $C_{16}H_{24}O_4$ (M⁺) m/z 280.1675, found 280.1677.

(2S,3R,5E)-7-(t-Butyldiphenylsilyloxy)-2-[(4-methoxyphenyl)methoxy]-3-methyl-

5-hepten-1-ol (26)

The following reaction was carried out under argon. To a cooled (-78 °C), stirred solution of **25** (1.31 g, 4.69 mmol) in CH₂Cl₂ (40 mL) were added Et₃N (1.1 mL, 8.0 mL), TBDPSCI (1.0 mL, 4.0 mmol), and a solution of DMAP (57.3 mg, 0.469 mmol) in CH₂Cl₂ (1 mL). The mixture was stirred while gradually wamred to –20 °C over 2 h and then quenched with saturated aqueous NaHCO₃. This was diluted with saturated aqueous NaHCO₃ (50 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:7) to provide 1.77 g (73%) of 26 as a colorless oil along with 0.18 g of recovered **25** (13%); TLC, R_f 0.43 (EtOAc/hexane, 1:2); $[\alpha]^{21}_D$ +0.8 (c 1.89, CHCl₃); ¹H NMR (270 MHz) δ 0.94 (d, J = 6.6 Hz, 3H), 1.06 (s, 9H), 1.63 (br s, 1H), 1.85 (m, 2H), 2.27 (m, 1H), 3.39 (ddd, J = 4.0, 4.5, 6.3 Hz, 1H), 3.59 (dd, J = 6.3, 11.5 Hz, 1H), 3.67 (dd, J = 4.0, 11.5 Hz, 1H), 3.80 (s, 3H), 4.16 (d, J =4.0 Hz, 2H), 4.47, 4.56 (2d, J = 11.0 Hz, $1H \times 2$), 5.49–5.65 (m, 2H), 6.88 (m, 2H), 7.33 (m, 2H), 7.42–7.44 (m, 6H), 7.65–7.71 (m, 4H); 13 C NMR (68 MHz) δ 15.02, 19.21, 26.81×3 , 34.47, 35.33, 55.23, 62.17, 64.45, 72.22, 82.96, 113.86×2 , 127.60×4 , 129.18×2 , 129.35×2 , 129.55, 130.56, 130.62, 133.82×2 , 135.52×4 , 159.21; IR (neat) 3400, 2930, 1615, 1515 cm⁻¹; HRMS calcd for $C_{28}H_{33}O_4Si$ (M⁺-t-Bu) m/z461.2148, found 461.2139.

Compound 18 from 26.

To a cooled (0°C), stirred solution of **26** (623 mg, 1.20 mmol) in CH_2CI_2 (12 mL) was added Dess–Martin periodinane (1.01 g, 2.38 mmol). The mixture was stirred vigorously for 40 min and diluted with 10% aqueous $Na_2S_2O_3$ (30 mL) at 0 °C. The mixture was stirred for 30 min, and the organic layer was separated. The aqueous layer was extracted with CH_2CI_2 . The combined organic layers were dried and concentrated in vacuo to give crude aldehyde, which was used in the next step without further purification.

To a cooled (0°C), stirred solution of CBr₄ (1.40 g, 4.22 mmol) in CH₂Cl₂ (10 mL) was added a solution of PPh₃ (2.21 g, 8.43 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred at 0 °C for 10 min and a solution of the crude aldehyde obtained above in CH₂Cl₂ (3 mL) was added at –78 °C. The mixture was stirred at –78 °C for 1 h and quenched with saturated aqueous NaHCO₃. This was diluted with saturated aqueous NaHCO₃ (40 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Et₃N/hexane, 1:100) to provide 621 mg (77%) of **18**.

(E)-4-lodo-3-buten-1-ol (29E)⁴

A solution of Bu₃SnH (4.3 mL, 16 mmol), 2,2'-azobisisobutyronitrile (183 mg, 1.11 mmol), and 3-butyn-1-ol (0.74 g, 10.6 mmol) in benzene (5 mL) was stirred at 80 °C for 47 h. After being cooled to ambient temperature, the solution was diluted with CH₂Cl₂ (100 mL).To this solution was added I_2 (4.06 g, 16.0 mmol) at 0 °C. The mixture was stirred at 0 °C for 30 min and then washed with 20% aqueous Na₂S₂O₃ (50 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were concentrated in vacuo. The residue was dissolved in Et₂O (100 mL) and 10% aqueous KF (50 mL) was added. After being vigorously stirred for 3 h, insoluble precipitates formed were filtered off and washed From the combined filtrate and washings, the organic layer was separated. with Et₂O. The aqueous layer was extracted with Et₂O. The combined organic layers were dried and concentrated in vacuo. The residue was dissolved in MeOH (20 mL) and MeONa (16 mL of 1.0 M in MeOH, 16 mmol) was added. The mixture was heated under reflux for 23 h, and the solvent was removed by evaporation. The residue was diluted with saturated aqueous NH₄Cl (100 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5) to provide 1.56 g (74%) of **29**E as a colorless oil; TLC, R_f 0.53 (EtOAc/hexane, 1:2); ¹H NMR (300 MHz) δ 1.53

(br s, 1H), 2.33 (ddt, J = 1.4, 7.3, 6.2 Hz, 2H), 3.69 (t, J = 6.2 Hz, 2H), 6.17 (dt, J = 14.5 Hz, 1.4 Hz, 1H), 6.55 (dt, J = 14.5, 7.3 Hz, 1H); ¹³C NMR (68 MHz) δ 39.05, 60.85, 77.23, 142.60; IR (neat) 3400, 2950, 1610 cm⁻¹; HRMS calcd for C₄H₇IO (M⁺) m/z 197.9542, found 197.9544.

(E)-1-lodo-4-(triphenylmethoxy)-1-butene (7)

To a cooled (0 °C), stirred solution of **29***E* (323 mg, 1.63 mmol) in pyridine (15 mL) were added chlorotriphenylmethane (546 mg, 1.96 mmol) and DMAP (38.1 mg, 0.312 mmol). The mixture was stirred for 25 h and then chlorotriphenylmethane (95.3 mg, 0.342 mmol) and DMAP (41.6 mg, 0.342 mmol) were added. The mixture was stirred for 12 h at 60 °C and concentrated in vacuo. The residue was diluted with NaHCO₃ (50 mL) and extracted with CH₂Cl₂. The organic layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:100) to provide 718 mg (100%) of **7** as a colorless oil; TLC, R_f 0.48 (toluene/hexane, 1:2); ¹H NMR (300 MHz) δ 2.32 (dt, J = 7.1, 6.6 Hz, 2H), 3.11 (t, J = 6.6 Hz, 2H), 6.05 (d, J = 14.4 Hz, 1H), 6.55 (dt, J = 14.4, 7.1 Hz, 1H), 7.19–7.32 (m, 9H), 7.41–7.45 (m, 6H); ¹³C NMR (75 MHz) δ 36.57, 62.13, 76.49, 86.54, 126.94 × 3, 127.76 × 6, 128.57 × 6, 143.31, 144.00 × 3; IR (neat) 3060, 2920, 1600 cm⁻¹; HRMS calcd for C₂₃H₂₁IO (M⁺) m/z 440.0637, found 440.0637.

(2*E*,5*R*,6*S*,9*E*)-1-(*t*-Butyldiphenylsilyloxy)-6-[(4-methoxyphenyl)methoxy]-5-meth yl-12-(triphenylmethoxy)-2,9-dodecadien-7-yne (30)

The following reaction was carried out under argon. To a stirred solution of **6** (85.0 mg, 0.165 mmol) and **7** (87.2 mg, 0.198 mmol) in Et₃N (2 mL) were added Pd(PPh₃)₄ (9.6 mg, 8.3 μ mol) and CuI (3.6 mg, 19 μ mol). The mixture was stirred for 2.5 h and then diluted with saturated aqueous NaHCO₃ (10 mL). This was extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:100) to provide 124 mg (91%) of **30** as a colorless oil; TLC, R_f 0.27 (EtOAc/hexane, 1:20);

[α]²⁵_D –36.8 (c 1.73, CHCl₃); ¹H NMR (300 MHz) δ 0.98 (d, J = 6.6 Hz, 3H), 1.04 (s, 9H), 1.81 (m, 1H), 1.96 (m, 1H), 2.30–2.46 (m, 3H), 3.14 (t, J = 6.7 Hz, 2H), 3.76 (s, 3H), 4.02 (dd, J = 1.2, 4.6 Hz, 1H), 4.12 (d, J = 4.1 Hz, 2H), 4.39, 4.71 (2d, J = 11.5 Hz, 1H \times 2), 5.47–5.65 (m, 3H), 6.18 (dt, J = 15.8, 7.1 Hz, 1H), 6.83 (m, 2H), 7.22–7.46 (m, 23H), 7.65–7.69 (m, 4H); ¹³C NMR (75 MHz) δ 15.26, 19.20, 26.81 \times 3, 33.80, 35.22, 38.49, 55.20, 62.74, 64.47, 70.17, 72.41, 85.16, 86.39, 86.56, 110.99, 113.63 \times 2, 126.94 \times 3, 127.58 \times 4, 127.76 \times 6, 128.62 \times 6, 129.03, 129.56 \times 4, 130.25, 130.56, 133.85 \times 2, 135.51 \times 4, 141.32, 144.13 \times 3, 159.07; IR (neat) 3040, 2935, 1615, 1515 cm⁻¹; HRMS calcd for C₅₆H₆₀O₄Si (M⁺) m/z 824.4261, found 824.4244.

(2*E*,5*R*,6*S*,7*Z*,9*E*)-1-(*t*-Butyldiphenylsilyloxy)-6-[(4-methoxyphenyl)methoxy]-5-m ethyl-12-(triphenylmethoxy)-2,7,9-dodecatriene (31)

A solution of 30 (58.9 mg, 0.0714 mmol) in 1-hexene (1 mL) was stirred under atmospheric hydrogen for 2 h in the presence of Lindlar catalyst (5.9 mg) and quinoline (3 μ L, 0.03 mmol). The catalyst was removed by filtration through a Celite pad, washed with EtOAc and the combined filtrate and washings were concentrated in vacuo. The residue was purified by column chromatography on silica gel (toluene/hexane, 1:1) to provide 38.8 mg (66%) of 31 as a colorless oil. 18.3 mg (31%) of **30** was recovered; TLC, R_f 0.28 (EtOAc/hexane, 1:20); $[\alpha]^{25}_D$ -4.0 (c 1.66, CHCl₃); ¹H NMR (270 MHz) δ 0.93 (d, J = 6.2 Hz, 3H), 1.04 (s, 9H), 1.66–1.79 (m, 2H), 2.24 (m, 1H), 2.37 (q, J = 6.6 Hz, 2H), 3.11 (t, J = 6.6 Hz, 2H), 3.77 (s, 3H), 3.99 (dd, J $= 6.2, 9.5 \text{ Hz}, 1\text{H}, 4.12 \text{ (d, } J = 4.8 \text{ Hz}, 2\text{H}), 4.20, 4.49 \text{ (2d, } J = 11.7 \text{ Hz}, 1\text{H} \times 2), 5.27 \text{ (t, }$ J = 9.5 Hz, 1H), 5.44–5.65 (m, 2H), 5.75 (m, 1H), 6.18–6.27 (m, 2H), 6.82 (m, 2H), 7.19–7.45 (m, 23H) 7.65–7.69 (m, 4H); 13 C NMR (75 MHz) δ 15.23, 19.20, 26.81 \times 3, 33.57, 35.45, 38.46, 55.20, 63.17, 64.51, 69.56, 77.43, 86.43, 113.57×2 , 126.89×3 , $127.20, 127.58 \times 4, 127.71 \times 6, 128.64 \times 6, 129.13, 129.31 \times 2, 129.41, 129.52 \times 2,$ 130.28, 131.02, 132.39, 133.31, 133.85 \times 2, 135.50 \times 4, 144.21 \times 3, 158.92; IR (neat) 3020, 2930, 1615, 1515 cm⁻¹; HRMS calcd for $C_{56}H_{62}O_4Si$ (M⁺) m/z 826.4417, found

826.4416.

(2*E*,5*R*,6*S*,7*Z*,9*E*)-6-[(4-Methoxyphenyl)methoxy]-5-methyl-12-(triphenylmethoxy)-2,7,9-dodecatrien-1-ol (32)

To a cooled (0 °C) solution of 31 (57.5 mg, 0.0695 mmol) in THF (1 mL) was added tetrabutylammonium fluoride (0.077 mL of 1.0 M solution in THF, 0.077 mmol). The mixture was stirred for 2.5 h. This was diluted with H₂O (10 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in vacuo. residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5) to provide 40.9 mg (100%) of **32** as a colorless oil; TLC, R_f 0.37(EtOAc/hexane, 2:1); $[\alpha]^{24}$ _D -2.4 (c 1.67, CHCl₃); ¹H NMR (270 MHz) δ 0.93 (d, J = 6.6 Hz, 3H), 1.48 (br s, 1H), 1.64-1.86 (m, 2H), 2.24 (m, 1H), 2.41 (q, J = 6.5 Hz, 2H), 3.13 (t, J = 6.5 Hz, 2H), 3.78 (s, 3H), 3.96–4.02 (m, 3H), 4.19, 4.49 (2d, J = 11.7 Hz, $1H \times 2$), 5.26 (t, J = 9.5 Hz, 1H), 5.50–5.64 (m, 2H), 5.76 (m, 1H), 6.18–6.32 (m, 2H), 6.83 (m, 2H), 7.19–7.31 (m, 11H), 7.42–7.46 (m, 6H); 13 C NMR (68 MHz) δ 15.26, 33.60, 35.42, 38.30, 55.23, 63.15, $63.73, 69.54, 77.20, 86.45, 113.57 \times 2, 126.91 \times 3, 127.19, 127.74 \times 6, 128.63 \times 6$ $128.95, 129.38 \times 2, 130.48, 130.94, 131.45, 132.46, 133.41, 144.21 \times 3, 158.96$; IR (neat) 3400, 3030, 2930, 1615, 1515 cm⁻¹; HRMS calcd for $C_{40}H_{44}O_4$ (M⁺) m/z588.3240, found 588.3243.

(2*E*,5*R*,6*S*,7*Z*,9*E*)-6-[(4-Methoxyphenyl)methoxy]-5-methyl-12-(triphenylmethoxy)-2,7,9-dodecatrien-1-al (5)

To a cooled (0 °C), stirred solution of **32** (38.1 mg, 0.0647 mmol) in CH₂Cl₂ (1 mL) was added MnO₂ (411 mg, 4.73 mmol). The mixture was stirred for 30 min, and the insoluble materials were filtered off and washed well with EtOH. The combined filtrate and washings were concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:15) to provide 31.4 mg (83%) of **5** as a colorless oil; TLC, R_f 0.30 (EtOAc/hexane, 1:5); [α]²⁴_D –7.9 (c 1.52, CHCl₃); ¹H NMR (300 MHz) δ 0.95 (d, J = 6.8 Hz, 3H), 1.88 (m, 1H), 2.07 (m, 1H), 2.41 (q, J = 6.6 Hz,

2H), 2.52 (m, 1H), 3.14 (t, J = 6.6 Hz, 2H), 3.79 (s, 3H), 4.04 (dd, J = 5.9, 9.5 Hz, 1H), 4.19, 4.50 (2d, J = 11.6 Hz, 1H × 2), 5.26 (t, J = 9.5 Hz, 1H), 5.80 (m, 1H), 6.03 (dd, J = 7.9 15.5 Hz, 1H), 6.20–6.32 (m, 2H), 6.73 (m, 1H), 6.83 (m, 2H), 7.18–7.31 (m, 11H), 7.42–7.45 (m, 6H), 9.43 (d, J = 7.9 Hz, 1H); ¹³C NMR (75 MHz) δ 15.45, 33.57, 36.04, 37.88, 55.24, 63.03, 69.60, 76.85, 86.46, 113.63 × 2, 126.81, 126.91 × 3, 127.71 × 6, 127.91, 128.62 × 6, 129.43 × 2, 130.58, 133.18, 134.06, 134.18, 144.18 × 3, 157.87, 159.05, 193.99; IR (neat) 3030, 2930, 1690, 1615, 1515 cm⁻¹; HRMS calcd for $C_{40}H_{42}O_4$ (M⁺) m/z 586.3083, found 586.3066.

(1*S*,2*S*,3*S*,6*S*,7*S*,8*R*)-2-Formyl-7-[(4-methoxyphenyl)methoxy]-8-methyl-3-[2-(trip henylmethoxy)ethyl]bicyclo[4.3.0]non-4-ene (4)

Compound 5 (29.5 mg, 0.0503 mmol) was dissolved in degassed toluene (5 mL), and a crystal of BHT was added. The solution was transferred into a 20 mL sealed tube equipped with a screwed stopper, and the tube was filled with argon. The tube was heated to 150 °C for 5 h. After being cooled to ambient temperature, the solution was concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:15) to provide 22.1 mg (75%) of 4; TLC, R_f 0.36 (EtOAc/hexane, 1:5); $[\alpha]^{24}_D$ +45.3 (c 0.945, CHCl₃); ¹H NMR (270 MHz) δ 1.05 (d, J = 5.8 Hz, 3H), 1.07 (m, 1H), 1.72 (m, 2H), 1.96 (m, 2H), 2.35 (m, 1H), 2.57 (m, 2H), 2.66 (m, 1H), 3.12-3.18 (m, 3H), 3.80 (s, 3H), 4.46, 4.54 (2d, J = 11.2 Hz, $1H \times 2$), 5.56 (m, 1H), 5.73(m, 1H), 6.87 (m, 2H), 7.23-7.32 (m, 11H), 7.41-7.44 (m, 6H), 9.68 (d, <math>J = 2.4 Hz, 1H); ¹³C NMR (68 MHz) δ 18.28, 29.72, 32.42, 33.81, 36.71, 39.62, 43.42, 53.62, 55.23, 61.13, 72.02, 86.50, 92.06, 113.75 \times 2, 126.93 \times 3, 127.74 \times 6, 128.58 \times 6, 128.66, 129.21×2 , 130.36, 130.65, 144.13×3 , 159.15, 204.92; IR (neat) 3020, 2930, 1720, 1615, 1515 cm⁻¹; HRMS calcd for $C_{40}H_{42}O_4$ (M⁺) m/z 586.3083, found 586.3083.

(1*R*,2*S*,3*S*,6*S*,7*S*,8*R*)-2-Hydroxymethyl-7-[(4-methoxyphenyl)methoxy]-8-methyl-3-[2-(triphenylmethoxy)ethyl]bicyclo[4.3.0]non-4-ene (33)

To a cooled (0 °C), stirred solution of 4 (17.8 mg, 0.0303 mmol) in EtOH (1 mL) was

added NaBH₄ (1.1 mg, 0.029 mmol). The mixture was stirred for 2 h and then quenched with saturated aqueous NH₄Cl. This was diluted with H₂O (10 mL) and extracted with CH₂Cl₂. The combined organic layers were dried and concentrated in The residue was purified by column chromatography on silica gel vacuo. (EtOAc/hexane, 1:5) to provide 17.7 mg (99%) of 33 as a colorless oil; TLC, R_f 0.33 (EtOAc/hexane, 1:3); $[\alpha]^{24}_D$ +64.5 (c 0.830, CHCl₃); ¹H NMR (300 MHz) δ 1.04 (d, J =6.6 Hz, 3H), 1.09 (m, 1H), 1.53 (m, 1H), 1.62 (m, 2H), 1.73 (m, 1H), 1.84 (m, 1H), 1.93 (m, 1H), 2.28 (m, 1H), 2.43 (m, 1H), 2.47 (m, 1H), 3.12 (dd, <math>J = 6.1, 7.3 Hz, 1H), 3.18(m, 2H), 3.54 (m, 2H), 3.79 (s, 3H), 4.47, 4.55 (2d, J = 11.2 Hz, $1H \times 2$), 5.48 (m, 1H), 5.66 (m, 1H), 6.87 (m, 2H), 7.20–7.32 (m, 11H), 7.43–7.46 (m, 6H); ¹³C NMR (75 MHz) δ 18.37, 30.20, 31.52, 34.81, 36.85, 39.72, 42.65, 43.52, 55.24, 61.92, 62.82, 72.05, $86.56, 92.12, 113.73 \times 2, 126.88 \times 3, 127.73 \times 6, 128.64 \times 6, 129.23 \times 2, 129.44,$ 129.74, 130.86, 144.26×3 , 159.07; IR (neat) 3400, 3020, 2930, 1615, 1515 cm⁻¹; HRMS calcd for $C_{40}H_{44}O_4$ (M⁺) m/z 588.3240, found 588.3233.

¹ Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422–3434.

² Boeckman, R. K., Jr., Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. **1991**, 113, 5337–5353.

³ Leonard, J.; Mohialdin, S.; Reed, D.; Ryan, G; Swain, P. A. Tetrahedron 1995, 51, 12843–12858.

⁴ Chong, J. M.; Heuft, M. A. Tetrahedron 1999, 55, 14243–14250.